+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

New type of silicon promises cheaper solar technology

News

An international research team led by The Australian National University (ANU) has made a new type of silicon that better uses sunlight and promises to cut the cost of solar technology.

The researchers say their world-first invention could help reduce the costs of renewable electricity below that of existing coal power stations, as well as lead to more efficient solar cells.

Senior researcher ANU Professor Jodie Bradby said silicon was used as the raw material for solar cells because of its abundance, low-cost and non-toxicity.

"But the standard form of silicon does not use all available sunlight," Professor Bradby said.

"Just by poking silicon with a tiny hard tip, we've created a more complex silicon capable of absorbing more sunlight than the standard type commonly used in solar cells.

"We have proved that we can easily make this new kind of silicon - previously thought unobtainable under normal room temperature and pressure - which could be used for making more efficient solar cells and lead to cheaper energy."

Dr Sherman Wong, who worked on the study for his PhD at ANU, is the first author of the paper published in the journal Physical Review Letters.

He said the team was exploring a little-known property of silicon - its ability to exist in different crystal forms.

"Silicon can also take many crystal forms that have different and useful properties," said Dr Wong, who is now at RMIT University.

"The new type of silicon we've created is called r8-Si. Instead of the atoms being square or cubic like in standard silicon, it's more complex - shaped a bit like a diamond on playing cards, only it's in 3D.

"It's an exciting field and there is a multi-billion dollar industry built around silicon manufacturing, so silicon is a super important material that's worth optimising."

Professor Bradby said the team would use unique high-pressure facilities at ANU to develop ways of making enough material to produce a prototype solar cell.

"We now need to measure how well this material absorbs light and behaves electrically," she said.

"We also need to scale up and then work on integrating this material into existing solar industries. This will take another three to five years."

The shape and complexity of the r8-Si was measured using X-ray diffraction at the Advanced Photon Source in the United States. The study was conducted with a large group of colleagues at the University of Melbourne and several overseas organisations.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: