+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

NREL creates cheaper GaAs solar cells

News

14.44 percent efficient GaAs solar cell formed on very thin layer of reformed porous germanium.

The potential to cheaply produce GaAs thin-film solar cells came a step closer to reality with the discovery of a way to reuse a surface on which the cells are made.

The findings are detailed in a paper newly published in the journal Joule, 'Germanium-on-Nothing Technology for Epitaxial Liftoff of GaAs Solar Cells' written by researchers at the US Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and from the Republic of Korea. One of the co-authors, Jihun Oh, is a former NREL postdoctoral researcher and is now with the Korea Advanced Institute of Science and Technology.

The team's research produced a 14.44 percent-efficient GaAs solar cell formed on a very thin layer of reformed porous germanium. Improvements in the process should enable the efficiency to rise “well above 20 percent,” said David Young, a senior scientist in NREL's High Efficiency Crystalline Photovoltaics group and a co-author of the paper.

The graphic above shows how a III-V solar cell can be grown and then transferred to a new substrate.

The GON process is composed of the preparation of Ge substrate for growing III-V materials (A), formation of cylindrical pores on Ge substrate (B), pore reorganisation of Ge pores in GON structure by hydrogen annealing (C), growth of III-V solar cells on GON film (D), and transfer of thin III-V solar cells on Ge film from the Ge substrate to a foreign substrate (E).



Various types of GON structures such as sphere (F) and plate-type (G) voids can be obtained in the GON structures.

Solar cells made from elements in the third and fifth columns of the periodic table–such as gallium arsenic– have been shown to be highly efficient at converting sunlight into energy, but their high costs pose a challenge and have limited their use to niche applications, mainly in the aerospace industry. The substrate itself, which is the crystalline wafer on which the cells are grown, accounts for about 30 percent of the cost of a III-V solar cell.

But the new germanium-on-nothing (GON) approach described in the Joule paper allowed the researchers to create a thin germanium layer on top of a germanium wafer, on which a GaAs solar cell is grown. The cell and the thin layer of germanium can then be peeled off of the substrate so that the original germanium wafer can be reused.

“Silicon-on-nothing has been known for years, but this is the first time that GON has been demonstrated with a surface sufficiently smooth to allow high-quality epitaxial growth of GaAs,” said Young, whose NREL co-authors are John Simon, Kevin Schulte, and Aaron Ptak.

The process involved in the new approach creates a series of cylindrical pores in the germanium wafer. The ratio of the pores’ diameter to depth, coupled with the distance between the pores, allows for the creation of a void (nothing) between the suspended single-crystal layer of germanium and the surface of the germanium wafer. This technique could enable the cost-effective and high-volume production of single and multijunction III-V solar cells.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: