+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

University Files Patent on Battery Type Solar Conversion Cell




The University of British Columbia (UBC) has announced the international patent filing for a Battery type Solar/Light conversion cell. This generator and storage approach allows both solar power generation and storage within a single cell. Based on photosynthesis, it can be implemented using abundant and readily replenished and renewable biomaterials.

This invention aims to allow industry to install solar photovoltaic (PV) systems with a built in energy storage component. This type of system addresses the natural intermittency of Solar (PV) systems due to the movement of clouds over modules and the need for night time power, and it provides a built-in solution for reducing the total demand on the electrical grid. This unit is anticipated to provide a simple effective method for energy arbitrage by storing direct and indirect Solar/Light energy for later use should the peak energy demands fall several hours after the peak solar generation is available, such as at night. The commercialization of this technical achievement would allow for a much larger penetration of solar PV into the total energy supply and management system and therefore the invention has the potential to increase the value and market for both grid-connected and off-grid solar PV systems worldwide.

The invention is the result of an interdisciplinary venture led by Professor J. Thomas Beatty, who studies photosynthesis in micro-organisms, and Professor John D. Madden in Electrical & Computer Engineering. "We began by asking whether we can learn from nature and make use of natural materials to create useful solar energy harvesting approaches. What we found is an approach that integrates two key components of energy supply: generation and storage".

The new approach involves the use of a light absorbing battery-like cell complete with two electrodes and an electrolyte. Light is absorbed by light harvesting molecules in the electrolyte. Charges are then transferred between the excited light harvesting molecules and mediator molecules, also in the electrolyte, with nearly perfect quantum efficiency. The mediators store the harvested energy, which can then be extracted at the electrodes on demand. Essential to the effectiveness of this technology is the development of highly selective electrodes, each of which primarily reacts with only one type of mediator.

"Unlike photovoltaic technologies, which rely on very thin absorbing layers, and transparent electrodes, this new technology operates with light arriving parallel to the surface of the electrodes, allowing for thicker devices with volume for energy storage," says Madden. "With the new architecture one can envision the creation of solar ponds for harvesting and storage. This is a very general new approach."

The UBC team is supported by Natural Sciences and Engineering Research Council of Canada. Researchers from the University of South Florida and the Australian Centre of Excellence in Electro materials Science are also involved.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: