+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
*/
{megaLeaderboard}
{normalLeaderboard}
News Article

Removing solar panel hotspots improves electrical and thermal energy output

News

A new model that demonstrates how solar panels could more effectively harness both electrical and thermal energy by addressing the issue of hotspots on solar cells has been developed as part of a study involving Kingston University.

Solar power forms a key part of the UK’s renewable energy roadmap, following recent commitments around reducing global emissions to tackle climate change. The government is aiming to reach net zero by 2050, with new, hybrid technologies making solar increasingly commercially viable.

Alongside photovoltaic solar panel systems that convert sunlight directly to electricity, waste heat can also be collected as thermal energy through these hybrid systems for use in hot water applications or to power cooling systems such as air conditioning. This could have a significant role to play in reducing emissions, particularly in hot countries.

In a new paper published in the Journal of Energy Conservation and Management, researchers from Kingston University, the University of Exeter, the Indian Institute of Technology Madras and the Academy of Scientific and Innovative Research, India, modelled the effectiveness of a hybrid, photovoltaic thermal system that uses an extra mirror to improve performance.

To create high enough temperatures to be useful in photovoltaic thermal systems, sunlight must be concentrated or focused using compound parabolic concentrators – curved, parabolic-shaped mirrors placed either side of the solar panels. However, the amount of sunlight hitting the panels can vary, creating hotspots which significantly affect overall output and can cause solar cells to fail.

In the new study, researchers modelled the performance of such a system that uses an additional vertical mirror as a homogeniser to distribute the concentrated sunlight more evenly across the cells. The model demonstrated how this addition improved electrical output – showing an increase of 12 per cent against the standard compound parabolic concentrator – and with thermal performance also rising by between one to two per cent.

The promising findings provided an insight into how hybrid systems could help make solar panels more cost effective and commercially viable for a range of uses in the future, Kingston University renewable energy expert Dr Hasan Baig said.

"The objective of these systems is to get high grade thermal energy, which can be used in a wide range of hot water applications and cooling systems, alongside high electrical output that can power machines or go directly into households. The challenge, when optimising a system to harness both types of energy, is you typically only get low grade thermal energy which doesn’t reach the required temperatures," he said.

Dr Baig said the research team’s model had accurately predicted the improved performance that could be achieved by more evenly distributing concentrated sunlight hitting the panels with a homogeniser mirror. Previous models had used calculations based on average radiation, which hadn’t considered the indirect impact hotspots were having on overall output, he explained.

"If we’re able to extract more energy out of solar systems, as well as reducing the space needed on rooftops for panels, it could have a real impact on reducing household emissions through the use of clean energy sources, both in the UK and in countries such as India, where air conditioning and refrigeration units are in huge demand," he added.

Read the full paper in the Journal of Energy Conservation and Management

ENVIRIA secures financing facility in the double-digit million euro range
k-Space Launches Its Newest Thin Film Metrology Solution
Ingeteam signs a supply agreement for almost 500 MW of photovoltaics in Spain with Matrix Renewables
Enphase Expands IQ8 Microinverter Deployments in Netherlands
Masdar to Develop 5 GW of Renewable Energy Projects
Streamlining planning and permitting can accelerate wind and solar development
Fluke Calibration launches new 5560A High-Performance Multi-Product Calibrator
Ingeteam, record new orders for operation and maintenance in 2022
UK solar innovator Naked Energy continues European expansion
Qcells to invest $2.5B to build complete US solar supply chain
Vicinity Centres and Enel X enter joint venture agreement
Sonnedix acquires a 300MW solar PV portfolio from Lightsource bp
L&G NTR Clean Power Fund Acquires Three Solar Projects in Spain
Using sensor technology to protect vulnerable regions
BayWa r.e. supports Schaeffler Group's sustainability goals through sale of solar park
BayWa r.e. supports Schaeffler Group's sustainability goals through sale of solar park
3D-Micromac and Schott join forces
Octopus Energy acquires Zestec Renewable Energy
Midsummer signs four LOI’s for 224 MW of thin film panels
ib vogt starts construction on 149 MWp project in Spain
NTR achieves commercial operation at 86MW Norra Vedbo Wind Farm
Atomically-thin ribbons can dramatically improve batteries
k-Space Glass Breakage Detection System for Glass and Solar Panels Also Verifies Color
Business Rating Revaluation for England & Wales could have a big impact on solar
Veolia awarded £27 million contract to cut carbon and energy costs for NHS
ib vogt completes 116 MWp Solar Project in Malaysia
Masdar Acquires Arlington Energy
Hitachi Energy hands over North Sea Link, the first interconnector between Norway and the UK
ENCAVIS finances two solar parks in Denmark
Octopus Energy enters Italian generation market
Otovo creates 100 million euros in customer savings in Q3
Maxeon Solar Expands its SunPower One Ecosystem to EV Charging

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: