+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

NRL Tests Autonomous "˜Soaring with Solar' Concept

News
Researchers at the U.S. Naval Research Laboratory (NRL), Vehicle Research Section and Photovoltaic Section are building on the proven concept of autonomous cooperative soaring of unmanned aerial vehicles (UAVs
Holding the photovoltaic (PV) UAV based on the SBXC sailplane, are members of the "˜Solar-Soaring' research flight crew (l-r) Dan Edwards and Trent Young (not shown: Chris Bovais, Sam Carter, Matthew Kelly, and Dave Scheiman). (U.S. Naval Research Laboratory)

Researchers at the U.S. Naval Research Laboratory (NRL), Vehicle Research Section and Photovoltaic Section tests a photovoltaic (PV) UAV [based on the SBXC sailplane], shown on takeoff at sunrise, October 14th, 2016. The research is to investigate the value of combining autonomous soaring algorithms and solar photovoltaics for capturing energy from the environment to extend the endurance of an aircraft. (U.S. Naval Research Laboratory)

Their research investigates the presence of solar photovoltaics (PV) to the cooperative autonomous soaring techniques, which enables long endurance flights of unmanned sailplanes that use the power of the sun.

The Solar Photovoltaic and Autonomous Soaring Base Program and the U.S. Marine Corps' Expeditionary Energy Office (E2O) want to improve the ability of unmanned platforms to support a 24-7 information, surveillance, and reconnaissance (ISR) mission. By doing so, the warfighter will greatly benefit because it will reduce the amount of batteries or fuel they must carry into battle, and improve the availability of continuous coverage of ISR assets.

"NRL has twice flown our solar UAV [based on the SBXC sailplane] over 10 hours using a combination of solar photovoltaics and autonomous soaring as part of the "˜solar-soaring' research program," said Dr. Dan Edwards, aerospace engineer. "This research is investigating the value of combining autonomous soaring algorithms and solar photovoltaics for capturing energy from the environment to extend flight endurance and mission operations of an aircraft."

A photovoltaic array, custom built in NRL's Vehicle Research Section and Photovoltaic Section, is integrated into the center wing panel of the PV-SBXC aircraft as a drop-in replacement to the original wing. A power management and distribution system converts the power from the solar arrays into direct current (DC) voltage, which the electric motor can use for propulsion, or recharge a "˜smart battery.'

Additionally, an autonomous soaring software algorithm "” that would typically monitor the local vertical winds around the aircraft "” commands the aircraft to orbit in any nearby updrafts, very similar to soaring birds. However, the algorithm was disabled for the two solar flights in order to assess the solar-only performance. Passive soaring "” meaning no specific maneuvers are attempted to catch thermals "” was still allowed, to let the aircraft turn the motor off if altitude increased because of an updraft along the aircraft's pre-defined flight path. The autonomous soaring software was tested extensively in previous flight demonstrations in late October 2015.

The UAV with solar arrays built at NRL using SunPower Inc. solar cells, flew for 10 hours, 50 minutes on October 14, 2016. Takeoff occurred at 7:20 a.m. at 95 percent battery state of charge and landing occurred at 6:10 p.m. with the battery at 10 percent state of charge. Thermal activity was very good in the middle of the day and 40 percent of the flight was spent with the motor off, and the solar array partly recharged the battery while the motor was off.

The UAV equipped with solar wings incorporated PV arrays from Alta Devices, Inc. It flew for 11 hours, 2 minutes on April 19, 2017. Takeoff occurred at 7:46 a.m., approximately an hour after sunrise, with the battery's state of charge at 90 percent. Landing occurred at 6:48 p.m., approximately an hour before sunset, with the battery's state of charge at 26 percent. Thermal activity was very weak and almost all of the flight was spent running the motor. Near solar noon, the solar array provided sufficient power to cruise on solar power alone.

The power management system for both flights was provided by Packet Digital, Inc., as part of a grant from the North Dakota Renewable Energy Council.

"The experiments confirm significant endurance gains are possible by leveraging thermal updrafts and incident solar radiation, rather than ignoring these free sources of energy," Edwards said. "Future testing will focus on quantifying the trade space between improvements in solar cell efficiency and combining with autonomous soaring for improved solar-recharging."

The Vehicle Research Section at NRL conducts research to develop technologies for autonomous, affordably expendable, unmanned systems that carry a wide variety of payloads for numerous mission scenarios. The Section is composed of aeronautical, aerospace, electrical, and mechanical engineers, scientists, and technicians dedicated to advancing the state-of-the-art in unmanned systems technology.

The Photovoltaics Section at NRL conducts research to develop photovoltaic (solar cell) technologies to enable logistics free, renewable, portable, power sources for the warfighter. The Section is composed of physicists, electrical engineers, and chemists dedicated to advancing the state-of-the-art in PV power sources and systems.

Researchers at the U.S. Naval Research Laboratory (NRL), Vehicle Research Section and Photovoltaic Section tests a photovoltaic (PV) UAV [based on the SBXC sailplane], shown on takeoff at sunrise, October 14th, 2016. The research is to investigate the value of combining autonomous soaring algorithms and solar photovoltaics for capturing energy from the environment to extend the endurance of an aircraft. (U.S. Naval Research Laboratory)

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: