+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Thin and flexible organic PV devices engineered to resist stress

News
Photograph of 3-micrometer-thick organic solar cell that was adhered to textile by an instant hot-melt process. (© PNAS)

A flexible polymer-based solar cell that can be heated up to 120 degrees Celsius without reducing its ability to harvest energy has been developed by a team led by RIKEN researchers (PNAS, "Thermally stable, highly efficient, ultraflexible organic photovoltaics"). The combination of flexibility and thermal robustness makes it attractive for powering wearable sensors and devices.

Organic solar cells use conductive, carbon-based polymers instead of rigid silicon to capture sunlight and convert it into electricity. They can thus be attached to irregular backings such as clothing without breaking.

Previously, Kenjiro Fukuda of the RIKEN Center for Emergent Matter Science and his team had encapsulated organic solar cells in other polymers to improve their compatibility with textiles by making them tougher and more water resistant.

However, one problem that still limits the long-term lifetime of flexible solar cells is their poor resistance to temperature changes. Thermal stress can make polymers brittle or cause them to become less conductive through expansion.

Fukuda, with group leader Takao Someya and colleagues from Japan and the United States, overcame this problem and fabricated organic solar cells with enhanced thermal stability by modifying the device's active layer"”a complex, light-absorbing polymer composed of fluorine atoms and sulfur-containing aromatic rings. Adding linear hydrocarbon chains to this molecule triggered the aromatic rings to stack in a "˜face-on' orientation that boosted the polymer's crystal strength.

The team replaced the conventional plastic substrates used to support the active layer with transparent polyimides that are mechanically stable over a wide temperature range. To form the polyimide film on a supporting plate, they used a wet-chemistry process, rather than vacuum deposition, since it is more amenable for fabricating large-area films.

But a wet-chemistry process necessitates carefully controlling the substrate's surface energy: if the substrate is too hydrophobic, the polyimide precursor solution will bead and not form a film, whereas if it is too hydrophilic, the polyimide film will adhere too strongly, making it hard to peel off. The researchers achieved the right surface energy by adjusting the thickness of a hydrophobic layer and treating it with oxygen plasma.

Following a final encapsulation step, they tested the behavior of their solar cell as it was rolled, folded, and crumpled repeatedly at different temperatures. The power conversion efficiencies remained at near-record rates despite the mechanical and thermal stress. This inspired the group to attach the devices to fabrics using "˜hot-melt' technology developed for the apparel industry (Fig.).

"The hot-melt process gives almost perfect adhesion of our ultrathin organic solar cells onto textiles, with no degradation in performance," says Fukuda. "We're now discussing these results with our collaborators to find a good strategy for commercialization."

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: