+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Rutgers study opens door to better solar storage

News
Coating star-shaped gold nanoparticles with titanium dioxide can produce hydrogen from water over four times more efficiently than other methods

Star-shaped gold nanoparticles, coated with the semiconductor TiO2, can produce hydrogen from water over four times more efficiently than other methods - opening the door to improved storage of solar energy and other advances that could boost renewable energy use and combat climate change, according to Rutgers University-New Brunswick researchers.

"Instead of using ultraviolet light, which is the standard practice, we leveraged the energy of visible and infrared light to excite electrons in gold nanoparticles," said Laura Fabris, associate professor in the Department of Materials Science and Engineering in the School of Engineering who led the work with Fuat Celik, assistant professor in the Department of Chemical and Biochemical Engineering. "Excited electrons in the metal can be transferred more efficiently into the semiconductor, which catalyzes the reaction."

The researchers, whose study was published online in the journal Chem, focused on photocatalysis, which typically means harnessing sunlight to make faster or cheaper reactions.

TiO2 illuminated by ultraviolet light is often is used as a catalyst, but using ultraviolet light is inefficient. In the study, Rutgers researchers tapped visible and infrared light that allowed gold nanoparticles to absorb it more quickly and then transfer some of the electrons generated as a result of the light absorption to nearby materials like titanium dioxide.

The engineers coated gold nanoparticles with TiO2 and exposed the material to UV, visible, and infrared light and studied how electrons jump from gold to the material. The researchers found that the electrons, which trigger reactions, produced hydrogen from water over four times more efficiently than previous efforts demonstrated. Hydrogen can be used to store solar energy and then combusted for energy when the sun is not shining.

"Our outstanding results were ever so clear," Fabris said. "We were also able to use very low temperature synthesis to coat these gold particles with crystalline titanium. I think both from the materials perspective and the catalysis perspective, this work was very exciting all along. And we were extremely lucky that our doctoral students, Supriya Atta and Ashley Pennington, were also as excited about it as we were."

"This was our first foray," she added, "but once we understand the material and how it operates, we can design materials for applications in different fields, such as semiconductors, the solar or chemical industries or converting carbon dioxide into something we can use. In the future, we could greatly broaden the ways we take advantage of sunlight."

'TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near-Infrared Regime' by Supriya Atta et al; Chem, July 12, 2018

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: