+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Challenging the solar debate

News

Could an evolution in photovoltaics sidestep arguments against solar panels?

“It is difference of opinion that makes horse races,” said Mark Twain. But what’s the leading opinion on whether photovoltaic (PV) solar panels are really the ecological and economical solution they are cracked up to be? Here, Dr Franky So, chief technology officer of Nextgen Nano, reveals a new technology that’s entered the race and could undertake the argument, entirely.

Back in 2008, the Environmental Science & Technology journal claimed that electricity produced from solar cells reduces air pollutants and greenhouse gases by about 90 per cent, compared with conventional fossil fuel technologies. Fast-forward to the present and the market for solar panels is expected to grow at a compound annual growth rate (CAGR) of around 17 per cent between 2017-2024.

Nevertheless, arguments persist against PVs. They include that it’s more expensive to produce power from solar energy than traditional fossil fuels, like coal and natural gas — China’s heavy subsidies for solar cell production are sometimes cited as an example. Another argument is that solar thermal energy systems are more expensive per unit of energy generated; although a counter argument would be that solar energy is cheaper over time because it lacks feedstocks.

Pros and cons

There are several different types of PV. About 90 per cent worldwide are based on some variation of silicon, which takes many forms depending on the element’s purity. This “purity” depends on how perfectly aligned the silicon molecules are and determines how well the cell is at converting solar energy — aka the photoelectric effect.

Solar cells made of monocrystalline silicon (mono-Si) contain cylindrical silicon ingots. They have the highest efficiency rates, typically 15 to 20 per cent, because they are made of the highest-grade silicon. Yet, they are also the most expensive and the circuit will break down if it is even partly covered by dirt or shade.

Polysilicon (p-Si), or polycrystalline silicon, cells are cheaper to produce than their mono-Si relatives, with a slightly lower heat tolerance. But their disadvantages include an efficiency of just 13–16 per cent plus lower space efficiency.

Generally, the solar industry highlights the low costs of p-Si and also the technical components of solar cells, yet these components represent less than half the cost of an installed solar system. Larger costs arise from installation, maintenance, insurance and operation.

Thin solar panels, many of which are in the early research and testing stages, have showed the most potential in terms of efficiency. This especially applies to Copper Indium Gallium Selenide (CIS/CIGS) solar cells. However, newer thin film technologies degrade quicker than older models, offsetting much of the presumed benefit.

Some argue that the only way to economise power consumption is not with the use of PVs, but simply by using less power overall. However, what if there was a technology that could not only sidestep the issues of efficiency and economy mentioned above, but also help to reduce the burden on electrical grids?

Next stage of solar

An evolution in PV technology could hold the answer to these problems by potentially avoiding them completely. Nextgen Nano has developed a technology that uses lightweight organic polymers in place of silicon. The result is cells that have the potential to be more efficient, and can be used to make flexible and semi-transparent solar panels. Called PolyPower, the solar cell combines organic semiconductors and PVs.

The last few years have seen rapid progress in increasing polymer solar cell efficiency from 10 per cent to 17 per cent power conversion efficiency. Given the high efficiency of polymer solar cells, it’s expected that the efficiency of transparent solar cells can reach beyond 13 per cent. That would open up a huge market for building integrated PVs and other energy harvesting applications that require transparency. What makes the system different is the use of nanotechnology; for which the market is expected to grow at a compound annual growth rate (CAGR) of around 17 per cent to 2024.

Nanotechnology is already making new materials available, marrying them with new uses, and could revolutionise many areas of manufacturing. In the case of photovoltaics, it's likely that nanotechnology will make solar power more economical by reducing the cost of constructing solar panels and related equipment.

In terms of the possible applications, Nextgen Nano’s technology has the potential to transform and decentralise energy applications like electric vehicles (EVs). Specifically, rather than simply plugging EVs into charging points connected to the grid, there’s potential to charge the vehicle through panels contained within the car itself. There is also scope to use the flexible and semi-transparent solar panels in technology in wearables, electronics and military hardware.

Nextgen Nano predicts a range of possibilities for product design engineers and environmental experts. What’s more, the potential for decentralised power could alleviate the expected burden on electrical grids — at least 89 per cent of air emissions associated with electricity generation could be prevented if electricity from PVs displaces electricity from the grid.

With their capabilities for greater efficiency and more economical production, PolyPower may be a surprise outlier that challenges arguments against PV systems or, to paraphrase Mark Twain, really makes the horse race.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: