Info
Info
News Article

Halide Perovskites Love-hate Relationship With The Sun

News

New research by scientists at TU/e and universities in China and the US sheds light on the causes of perovskite solar cell degradation

Solar cells made of perovskite are at the centre of much recent solar research. However, perovskite cells have a love-hate-relationship with the sun. The light that they need to generate electricity, also impairs the quality of the cells, severely limiting their efficiency and stability over time.

Research by scientists at the Eindhoven University of Technology and universities in China and the US now sheds new light on the causes of this degradation and paves the way for designing new perovskite compositions for the ultimate stable solar cells.

Over the past decade, the performance of perovskite solar cells has improved dramatically, with efficiency rates reaching more than 25 percent, which is close to the state-of-art for silicon solar cells.

The new research focuses on perovskite solar cells made from formamidinium-caesium lead iodide, a halide compound that has become increasingly popular as it combines high efficiency and reasonable heat resistance with low manufacturing costs.

The researchers at TU/e, Peking University and University of California San Diego carried out theoretical analysis and practical experiments that involved monitoring the photovoltaic performance of the panels over 600 hours of exposure and characterising the degraded perovskites.

From this they conclude that sunlight generates charged particles in the perovskite, which tend to flow to places in the solar panel where the band gap (the minimum amount of energy needed for generating the free electrons) is lowest, in this case the formamidinium perovskite. The resulting energy differences make the mixed compounds that worked together so well to make the cell efficient, fall apart into separate clusters. It appears that especially the caesium-heavy clusters (the green dots in the image) are photoinactive and current-blocking, limiting the performance of the device. (The pictures above show the atomic structure of mixed FACsPbI3 perovskite, where it separates into two CsPbI3 (green region) and FAPbI3 clusters under light excitation).

Solutions

According to Shuxia Tao, who together with PhD candidate Zehua Chen and her colleague Geert Brocks was responsible for the TU/e part of the research, the new findings are one step further to finding the way to possible solutions.

"By combining macroscopic tests, microscopic materials characterisation and atomistic modelling, we were able to thoroughly understand the instability of halide perovskites that are intrinsic to device operation. This opens the possibility for designing new perovskite compositions for the ultimate stable solar cells."

Possible strategies include using additives to enhance the chemical interaction inside the materials in the panels, tuning the band gaps by using other elements like bromide and rubidium instead of iodide and caesium, or modifying the energy levels to extract photo-carriers more efficiently.

Tao stresses that more research is needed to see what solution works best. In addition, separation of halide compounds is not the only cause for perovskite degradation. These additional causes require separate analysis.

'Microscopic Degradation in Formamidinium-caesium Lead Iodide Perovskite Solar Cells under Operational Stressors' by Li, Y. Luo et al. DOI: 10.1016/j.joule.2020.06.005

EnBW Chooses Delta Inverters For 2.62 MWp Solar Farm In Kenzingen
SUNfarming Secures EUR 10 Million In Fresh Money For Poland
Q CELLS Solar Modules Keeping The Lights On For Dutch Bulb Grower
Sonnedix Acquires 150MW Utility Scale Project Located In Central Chile
Driving Efficiency Through Flexible Solar Power Solutions
Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
EnergyLink3 And C4V Lead Tesla In Race To Less Toxic Mobile Battery Solution
Array Technologies Announces A 1GW Purchase Agreement With RP Construction Services
Leclanché Selected By ENERGODATA To Provide Battery Storage
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
US Solar Fund To Acquire Up To 50% Of 200MWDC Mount Signal 2
AEG Power Solutions Equips The Microgrid Laboratory Emulator Of Paderborn University
SUNfarming Reaches Financial Close On Project Financing For 26 MWp PV Portfolio In Poland
The Smarter E South America Postponed To October 18-20, 2021
BayWa R.e. And HeidelbergCement Sign First Solar Corporate PPA In Polish History
Ib Vogt Achieves Financial Close And Start Of Construction Of 116 MWp Solar PV Project In Malaysia
Sunstore Solar Launches WattGrid, A New Range Of Turnkey Off-grid Power Systems
Sonnedix Adds 40 MW Of Capacity To Its Portfolio In Chile
VivoPower International PLC Announces Completion Of Electrical Works For 39 MWdc Molong Solar Farm
SolarArise Commissions 75 MW Solar Plant In Uttar Pradesh
Solar Energy For Water Treatment: IBC SOLAR Helps Water Authority Become More Sustainable
Everoze Creates Skyray To Design And Engineer Great Solar PV Projects
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
Sonnedix Brings Chile Closer To Meet Its Renewable Power Targets

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event