Info
Info
News Article

Printable Solar Cells

News
New inorganic semiconductor layers hold promise for solar energy
A team of researchers from the University of Chicago and the U.S. Department of Energy's (DOE) Argonne National Laboratory has demonstrated a method that could produce cheaper semiconductor layers for solar cells. The inorganic nanocrystal arrays, created by spraying a new type of colloidal "ink", have excellent electron mobility and could be a step towards addressing fundamental problems with current solar technology.

"With today's solar technology, if you want to get significant amounts of electricity, you'd have to build huge installations over many square miles," said team leader Dmitri Talapin, who holds a joint appointment with Argonne and the university. But because current solar cells are based on silicon, which is costly and environmentally unfriendly to manufacture, they aren't cost-effective over large areas. The challenge for scientists is to find a way to manufacture large numbers of solar cells that are both efficient and cheap.

One possibility to make solar cells more economically would be to "print" them, similar to how newspapers are printed. "You'd use a kind of 'ink,' stamped on using a roll technology with a flexible substrate," Talapin said.

Solar cells have several layers of different materials stacked on top of each other. The team focused on the most important layer, which captures sunlight and converts it into electricity. This layer, made of a semiconducting material, must be able to transform light into negative and positive electrical charges but also easily release them to move further along the material to generate electrical current.

Many methods to grow the semiconductors need high temperatures, but a cheaper approach would be to make them in solution. This, however, requires a precursor that is soluble.

The team developed that precursor using quantum dots. Small grains of semiconductors, suspended in a liquid, are "glued" together with new molecules called "molecular metal chalcogenide complexes." The process heats the material to about 200 degrees Celsius, much lower than the temperatures required for manufacturing silicon solar cells. The result is a layer of material with good semiconducting properties.

Inorganic solar cell array Arrays of quantum dots allow fabrication of solar cells by printing and other inexpensive techniques.

"The electron mobility for this material is an order of magnitude higher than previously reported for any solution-based method," Talapin said.

The team used intense X-rays from the DOE Office of Science's Advanced Photon Source at Argonne to watch as the semiconductor film was created.

"We believe that we could make very competitive solar cells with these nanoparticles," Talapin said.

Talapin said the success played on the complementary partnership between the University of Chicago and Argonne's Center for Nanoscale Materials. "At the university we have great students and postdocs who can do a lot of the theoretical chemistry, which requires a lot of manpower," Talapin said, "but Argonne is a fantastic place to do research that requires sophisticated instrumentation and infrastructure."

The paper, "Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays", was published in Nature Nanotechnology. The research was supported by the Office of Naval Research and a National Science Foundation CAREER award. Work at the Centre for Nanoscale Materials and the Advanced Photon Source was supported by the DOE's Office of Science.

The Centre for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. 

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.


Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
Winch Energy Closes Largest Mini Grid Financing Portfolio To Date
Solar Energy For Water Treatment: IBC SOLAR Helps Water Authority Become More Sustainable
SolarArise Commissions 75 MW Solar Plant In Uttar Pradesh
Leclanché Selected By ENERGODATA To Provide Battery Storage
BayWa R.e. And HeidelbergCement Sign First Solar Corporate PPA In Polish History
International Solar Alliance Special Assembly Elects Dr Ajay Mathur As New Director General
Sonnedix Acquires 150MW Utility Scale Project Located In Central Chile
Sonnedix Brings Chile Closer To Meet Its Renewable Power Targets
Driving Efficiency Through Flexible Solar Power Solutions
AEG Power Solutions Equips The Microgrid Laboratory Emulator Of Paderborn University
VivoPower International PLC Announces Completion Of Electrical Works For 39 MWdc Molong Solar Farm
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
SUNfarming Reaches Financial Close On Project Financing For 26 MWp PV Portfolio In Poland
Q CELLS Solar Modules Keeping The Lights On For Dutch Bulb Grower
Greencoat Renewables Announces First Transaction In Nordic Market
Ib Vogt Achieves Financial Close And Start Of Construction Of 116 MWp Solar PV Project In Malaysia
US Solar Fund To Acquire Up To 50% Of 200MWDC Mount Signal 2
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
SUNfarming Secures EUR 10 Million In Fresh Money For Poland
Luxcara And GE Renewable To Deliver 753 MW To Sweden With Single Onshore Wind Farm
Sonnedix Adds 40 MW Of Capacity To Its Portfolio In Chile
SunBrush Mobil And Infinity Establish Service Base At Benban, Africa's Largest Solar Park
The Smarter E South America Postponed To October 18-20, 2021

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event