+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Bio based solar cell

News

Researchers at the Ruhr-Universität Bochum (RUB) have developed a bio-based solar cell. They embedded the two proteins photosystem 1 and 2, which in plants are responsible of photosynthesis, into complex molecules developed in-house, thus creating an efficient electron current. Headed by Prof Dr Wolfgang Schuhmann from the Department of Analytical Chemistry and Center for Electrochemical Sciences (CES) and Prof Dr Matthias Rögner from the Department of Plant Biochemistry, the team has published a report in the journal "Angewandte Chemie".

In leaves, the photosystems 1 and 2 utilise light energy very efficiently; this is required for converting carbon dioxide into oxygen and biomass. The Bochum researchers' bio-based solar cell, on the other hand, generates electricity rather than biomass. Prof Rögner's team isolated the two photosystems from thermophilic cyanobacteria that live in a hot spring in Japan. Because of their habitat and behaviour, their photosystems are much more stable than comparable proteins of species that do not occur under extreme environmental conditions. Prof Schuhmann's team developed complex electron-conducting materials, so-called redox hydrogels. The researchers embedded the photosystems into these hydrogels in order to connect them to the electrodes of the photovoltaic cells.

The cell is made up of two chambers. In the first chamber, the protein photosystem 2 extracts electrons from water molecules, thus generating oxygen. The electrons migrate through the redox hydrogel to the electrode in the first chamber which is connected to the electrode in the second chamber. The electrode in the second chamber conducts the electrons via a different redox hydrogel onto photosystem 1. There, electrons are passed to oxygen; water is generated. However, the photosystems carry out these processes only if they are powered by light energy. Thus, if exposed to light, there is a continuous electricity flow within the closed system.

In order to convert solar into electric energy, there must be a potential difference between the two electrodes. The Bochum researchers have established this difference by deploying redox hydrogels with different potentials. The potential difference determines the bio photovoltaic cell's voltage and, consequently, its efficiency. Currently, the bio-based solar cell boasts an efficiency of several nanowatts per square centimetre. "The system may be considered a blue print for the development of semi-artificial and natural cell systems in which photosynthesis is used for the light-driven production of secondary energy carriers such as hydrogen," says Prof Rögner.

The project was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) as part of the Cluster of Excellence RESOLV (EXC 1069) and by the EU as part of the programmes "CyanoFactory" and "COST Action TD1102 Phototech".

 

 

Reference

T. Kothe, N. Plumeré, A. Badura, M.M. Nowaczyk, D.A. Guschin, M. Rögner, W. Schuhmann (2013): Combination of A Photosystem 1-Based Photocathode and a Photosystem 2-Based Photoanode to a Z-Scheme Mimic for Biophotovoltaic Applications, Angewandte Chemie International Edition, DOI: 10.1002/anie.201303671

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: