+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

IBM and Airlight team up for sunflower shaped CPV devices

News

Airlight Energy, a Swiss-based supplier of solar power technology has partnered with IBM Research to bring affordable solar technology to the market by 2017. The system can concentrate the sun's radiation 2,000 times and convert 80 percent of it into useful energy to generate 12 kilowatts of electrical power and 20 kilowatts of heat on a sunny day"”enough to power several average homes.

The High Concentration PhotoVoltaic Thermal (HCPVT) system, which resembles a 10-meter-high sunflower, uses a 40-square-meter parabolic dish made of patented fibre-based concrete, which can be moulded into nearly any shape in less than four hours and has mechanical characteristics similar to those of aluminium at one-fifth the cost.

The inside of the parabolic dish is covered with 36 elliptic mirrors made of 0.2-millimeter-thin recyclable plastic foil with a silver coating, slightly thicker than the wrapper chocolate bars are packaged in, which are then curved using a slight vacuum. The mirrored surface area concentrates the sun's radiation by reflecting it onto several microchannel liquid-cooled receivers, each of which is populated with a dense array of multi-junction photovoltaic chips"”each 1à—1-cm2 chip produces an electrical power of up to 57 watts on a typical sunny day. The mirrors and the receiver are encased with a large inflated transparent plastic enclosure to protect them from rain or dust. The enclosure also prevents birds and other animals from getting in harm's way.

The photovoltaic chips, similar to those used on orbiting satellites, are mounted on micro-structured layers that pipe treated water within fractions of millimetres of the chip to absorb the heat and draw it away 10 times more effectively than with passive air cooling. The 85-90 Celsius (°C) hot water maintains the chips at safe operating temperatures of 105 °C which otherwise would reach over 1,500 °C. The entire system sits on an advanced sun tracking system, which positions the dish at the best angle throughout the day to capture the sun's rays.

The direct hot-water cooling design with very small pumping power has already been made commercially available by IBM in its high-performance computers, including SuperMUC, Europe's fastest supercomputer in 2012.

"The direct cooling technology with very small pumping power used to cool the photovoltaic chips with water is inspired by the hierarchical branched blood supply system of the human body," said Dr. Bruno Michel, manager, advanced thermal packaging at IBM Research.

An initial demonstrator of the multi-chip solar receiver was developed in a previous collaboration between IBM and the Egypt Nanotechnology Research Centre.

With such a high concentration and based on its radical design, researchers believe that with high-volume production they can achieve a cost of two to three times lower than comparable systems.

Airlight Energy has spun off a new company called Dsolar (dish solar) to market, license and sell the HCPVT system globally. Dsolar has licensed several patents from IBM in the area of hot-water chip cooling.

"With the HCPVT we are ushering in a new generation of solar energy technology," said Dr. Gianluca Ambrosetti, Head of Research, Airlight Energy with responsibilities for building the new spinoff. "Not only is the system affordable, but it will create jobs where it is installed because many of the materials will be sourced locally. We expect to partner with firms around the world to bring a commercial version to market by 2017."

Based on its current design, scientists estimate that the operating lifetime for the HCPVT structure is up to 60 years with proper maintenance. The protective foil and the plastic elliptic mirrors will need to be replaced every 10"“15 years depending on the environment, and the photovoltaic cells need replacing every 25 years. Throughout its lifetime the system will benefit from design and manufacturing improvements, allowing for greater system efficiency.

The HCPVT system can also be customized with further equipment to provide drinkable water and air conditioning from its hot water output. For example, salt water can pass through a porous membrane distillation system, where it is vaporized and desalinated. Such a system could provide 30"“40 litters of drinkable water per square meter of receiver area per day, while still generating electricity with a more than 25 percent yield or two kilowatt hours per day"”a little less than half the amount of water the average person needs per day according to the United Nations, whereas a large multi-dish installation could provide enough water for a town.

By means of a thermally driven sorption chiller, cool air can also be produced. A sorption chiller is a device that converts heat into cooling via a thermal cycle applied to a liquid or solid sorption material. Adsorption chillers, with solid silica gel adsorbers and with water as a working fluid, can replace compression chillers, which place a burden on electrical grids in hot climates and contain working fluids that are harmful to the ozone layer. Although absorption (liquid sorption) systems are already available for combination with the HCPVT system, they provide less cooling output compared to low-temperature driving heat for the adsorption (solid sorption) systems under development at IBM. The systems can also be customized with a transparent back for urban installations.

Initial HCPVT systems will be made available with non-optimized predecessor distillation and sorption cooling systems. Systems with optimized desalination and sorption cooling technologies require an additional two to three years of development with additional partner companies.

Airlight Energy and the IBM Corporate Service Corps (CSC) will team up to donate a HCPVT system to two deserving communities. Each winning community will receive a prototype HCPVT system from Airlight Energy, and be eligible for pro bono enablement and transformation support from IBM Corporate Service Corps. Applications from communities will be open in 2015 and the winners will be announced in December 2015, with installations beginning in late 2016.

Scientists at Airlight and IBM envision the HCPVT system providing sustainable energy to locations around the world including southern Europe, Africa, the Arabian Peninsula, the southwestern part of North America, South America, Japan and Australia. In addition to residences, additional applications include remote hospitals, medical facilities, hotels and resorts, shopping centres and locations where available land is at a premium.

Some of the initial funding for the development of the HCPVT system was provided to IBM Research, Airlight Energy, ETH Zurich and the Interstate University of Applied Sciences Buchs NTB in a three-year grant from the Swiss Commission for Technology and Innovation.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: