+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

3D-Micromac's system to enable solar cell cutting into half cells

News

3D-Micromac AG plan to introduce the brand-new microDICE OTF system at SNEC 2015. The system uses Thermal-Laser-Separation for cutting of cells into half cells. By using half cell technology the average module power yield can be increased significantly.

Cell separation has become industrial relevant due to the introduction of half-cell modules concepts, which allow a substantial power gain. The standard industrial process of p-type cells is based on a laser scribing and subsequently mechanical cleaving. The disadvantages of this process are the reduction of the cell efficiency, the reduced mechanical strength and the expensive handling due to the combination of a laser process with a subsequent cleaving.

3D-Micromac has overcome these weaknesses with the brand-new microDICE OTF using Thermal-Laser-Separation for splitting PV cells into half cells. The separated cells show a significantly higher mechanical strength, better edge quality as well as a lower power reduction compared to laser scribing and    cleaving approaches.

The highly-productive system microDICETM OTF achieves a throughput of 3,600 cells per hour of incoming full cells. The optical set-up relies on the industry-proven on-the-fly technology successfully used at 3D-Micromac's laser structuring tools for processing of PERC cells. It guarantees highest productivity and an outstanding price-performance ratio. The laser processing is realized during the continuous transport of the cells under the laser source, whereby the relative motion of the cells is automatically compensated for. Stops for the positioning of the individual cells are completely eliminated. The continual movement of the conveyor belt results in an almost 100-percent capacity utilization of the laser source. The microDICE OTF is a fully automatic 24/7 production solution and can be offered as stand-alone or inline system.

Background information on Thermal-Laser-Separation

Thermal-Laser-Separation (TLS) is used in the semiconductor industry's back-end to separate semiconductor wafer in components. The process is based on thermal induced mechanical stress, generated by a well-adjusted combination of a laser heating and cooling.

The method is suitable for most brittle materials in the semiconductor industry, including Si, SiC, Ge and GaAs wafers. Compared to traditional separation technologies, TLS impresses with clean, micro-crack-free edges and greater resulting bending strength. The complete cleaving is a one pass process with a speed of up to 300 mm/s. The relatively low temperature (no material is ablated or melted) in combination with the high cleaving speed are the reason that the electrical properties are not influenced by the separation step. Furthermore, the high throughput and wear-free processing offer great potential for reducing production costs and cost of ownership.

 

Cross section of a Si solar cell after TLS


Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: