+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Researchers fix perovskite flaws to improve solar efficiency

Simple chemical treatment can 'turn on' poorly performing regions

A new study published in Science by researchers from the University of Washington and Oxford University suggests that perovskite materials, generally believed to be uniform in composition, contain flaws that can be engineered to improve solar devices even further.

"Perovskites are the fastest-growing class of photovoltaic material over the past four years", said lead author Dane deQuilettes, a University of Washington doctoral student working with UW's professor David Ginger who spent several months as a visiting student in Henry Snaith's group at Oxford University.

'In that short amount of time, the ability of these materials to convert sunlight directly into electricity (currently at an efficiency of 20 percent) is approaching that of today's silicon-based solar cells (25 percent efficiency), rivalling technology that took 50 years to develop. But we also suspect there is room for improvement.'

The research team used high-powered imaging techniques to find defects in the perovskite films that limit the movement of charges and, therefore, limit the efficiency of the devices.

deQuilettes and the team used confocal optical microscopy, which is often used in biology, and applied it to semiconductor technology. They used fluorescent images and correlated them with electron microscopy images to find 'dark' or poorly performing regions of the perovskite material at intersections of the crystals. This result held true even for samples corresponding to the state-of-the-art solar cell efficiencies. In addition, they discovered that they could 'turn on' some of the dark areas by using a simple chemical treatment.

The images offered several surprises but also will lead to accelerated improvements in the materials' uniformity, stability and efficiency, according to Ginger, the paper's corresponding author. 'Surprisingly, this result shows that even what are being called good, or highly-efficient perovskite films today still are 'bad' compared to what they could be. This provides a clear target for future researchers seeking to improve and grow the materials,' he said.

Co-author Sam Stranks, who conducted the work at Oxford University's Department  of Physics and is now based at MIT, said: 'We've seen device efficiencies increase by roughly 25 percent with this chemical treatment and the challenge is now to find other treatments and tricks to further improve these materials. The end goal would be to make the entire film uniformly 'bright' enabling us to have a solar cell operating at the thermodynamic efficiency limits.'

'Impact of microstructure on local carrier lifetime in perovskite solar cells' by Dane deQuilettes et al, is published in Science DOI: 10.1126/science.aaa5333.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: