+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

New research shows how nanowires can be formed

News
New research shows nanowires made from gallium arsenide and composed of different crystal structures are formed.

An article published in Nature by researchers at Lund University shows how different arrangements of atoms can be combined into nanowires as they grow. Researchers learning to control the properties of materials this way can lead the way to more efficient electronic devices.

Nanowires are believed to be important elements in several different areas, such as in future generations of transistors, energy efficient light emitting diodes (LEDs) and solar cells.

The fact that it is possible to affect how nanowires are formed and grow has been known for a long time. What researchers have now been able to show is what needs to be done to give the nanowires a particular structure.

The ground-breaking discovery includes showing how nanowires grow, and affect the formation of different atomic layers, by using a powerful microscope and theoretical analysis.

"We now have on tape the events that take place, and what is required to be able to control the nanowire growth", says Daniel Jacobsson, former doctoral student at the Lund University Faculty of Engineering, and currently a research engineer at the Lund University Centre for Chemistry and Chemical Engineering.

The team wanted to understand how nanowires grow, and chose to film them though an electron microscope. The article in Nature is about these films, which show nanowires made from gallium arsenide and composed of different crystal structures.

"The nanowires grow through a self-assembly process which is spontaneous and hard to control. But if we can understand how the nanowires grow, we can control the structures that are formed in a more precise way, and thereby create new types of structures for new fields of application", says Daniel Jacobsson.

At the Centre for Chemistry and Chemical Engineering in Lund, a world-leading "super microscope" is under construction, which will be able to show, in high resolution, how atoms are joined together when nanostructures are formed.

"In our article, we show how dynamic the growth of nanowires really is. Once the new microscope is in place, we hope to be able to provide even more details and expand the scope of materials studied.

Both the current results, and hopefully those to come, are important for an even more exact formation of nanowires for various applications", says Professor Kimberly Dick Thelander.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: