+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Utilizing a broader share of the solar spectrum

Graphene quantum dots can improve the efficiency of silicon solar cells.

A graphene quantum dot (white) on top of a solar cell formed by silicon (Si) insulating (ITO) and metal (Au) layers. Reproduced with permission from ref 1. © 2016 American Chemical Society

Small flakes of graphene could1 expand the usable spectral region of light in silicon solar cells to boost their efficiency, new research from KAUST shows1.

Solar cell materials have become significantly cheaper to produce in recent years, yet further cost savings are needed to make solar technologies commercially attractive. The prevalence of silicon in solar cells makes them a good target for efficiency enhancement.

"By improving the efficiency of silicon solar cells, we can provide a more cost-effective way for energy production," said Jr-Hau He, KAUST associate professor of electrical engineering, who also led the research team.

Graphene quantum dots are small flakes of graphene that are useful because of their interaction with light. One of these interactions is optical downconversion, which is a process that transforms light of high energies into lower energy (for example, from the ultraviolet to the visible).

Downconversion can be used to boost solar cells. Silicon absorbs light very efficiently in the visible part of the spectrum, and therefore appears black. However, the absorption strength of silicon for ultraviolet light is much smaller, meaning that less of this light is absorbed, reducing the efficiency of solar cells in that part of the spectrum. One way to circumvent this problem is the downconversion of ultraviolet light to energies where silicon is a more efficient absorber.

Graphene quantum dots are ideal candidates for this purpose. They are easy to manufacture using readily-available materials such as sugar and by then heating them with microwave radiation. While the dots are almost transparent to visible light, which is important to pass that light through to the solar cell, they are efficient in converting UV light to lower energies.

The researchers integrated the quantum dots on a silicon solar cell device. The efficiency of the solar cells increased in comparison to control samples. For a mature technology to show a clear improvement in efficiency is promising, because it can be produced using an easy manufacturing process.

The test sample solar cells measured so far have not yet been optimized to be closer to the record-breaking performances seen in silicon. The researchers therefore plan to combine some other enhancement technologies previously achieved in similar devices, He noted.

"We have been successfully utilized surface engineering treatments, including fabricating nanostructures and passivation layers, to improve the light harvesting and the electrical properties of solar cells. By integrating these techniques all together, we hope that in the next few years the world record can be broken at KAUST," he said.


Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: