+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

DoE lab optimises CdTe recipe

News
Research findings could be used as roadmap to make better solar cells

Above: the entire solar material for the sample with less than or equal to 30 percent selenium is photoactive (top) while the bottom of the solar material for the image below contains greater than 35 percent selenium and has reduced photoactivity.

Solar cells based on cadmium and tellurium could move closer to theoretical levels of efficiency following investigations by researchers at the US Department of Energy's Oak Ridge National Laboratory.

A team led by Jonathan Poplawsky of the Center for Nanophase Materials Sciences used advanced microscopy techniques to discover efficiency differences of crystalline structures of various mixtures of cadmium, tellurium and selenium. The team's paper is published in Nature Communications.

While some of today's solar cells use a blend of cadmium and tellurium to convert light into electricity, adding the optimum amount of selenium in the right places could help increase efficiency from the current mark of about 22 percent to levels approaching the theoretical limit of 30-33 percent. The trick is to determine the best ratio of selenium.

"Using different microscopy methods, we were able to gain a better understanding of the phases, compositions and crystalline structures that allow these materials to convert light into electricity more efficiently," said Poplawsky, adding that the availability of data is limited. "In some instances, adding too much selenium changes the crystalline structure of cadmium-tellurium and dramatically reduces the conversion efficiency."

For this study, researchers studied four solar cells with different selenium contents - and corresponding changes in crystal structure - and learned that the one with the highest level of selenium did not perform well. Neither did the one with the lowest selenium content. The alloy composition that performed best consisted of approximately 50 percent cadmium, 25 percent tellurium and 25 percent selenium.

To make their determination, researchers used a combination of analytical techniques, including atom probe tomography, transmission electron microscopy and electron beam induced current. These are capabilities within the CNMS, a DOE Office of Science User Facility.

"We have shown that the amount of selenium incorporated into the cadmium-tellurium controls whether the small crystals inside the solar cell form as crystal structure A or crystal structure B," Poplawsky said. "This information can be used as a roadmap for solar cell producers to make improved CdTe solar cells that use selenium additions, and hopefully increase the overall efficiency."

Poplawsky noted that solar panels typically use silicon as the material for converting sunlight into electricity. CdTe, however, has an advantage over silicon because it can absorb the same amount of sunlight with 98 percent less semiconducting material, thus reducing the overall cost of the solar panel. This also makes solar panels composed of cadmium, tellurium and selenium more competitive with other forms of electricity generation.

The research was funded by DOE's SunShot Initiative in collaboration with the National Sciences Foundation.

'Structure and Compositional Dependence on the CdTexSe1-x Alloy Layer Photoactivity in CdTe-based Solar Cells', by Wei Guo et al; Nature Communications 7, Article number: 12537

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: