+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

A record photovoltaic effect observed in antiferroelectrics

News

An article in Advanced Materials, authored by ICN2 researchers Dr Amador Pérez-Tomás, Prof Mónica Lira-Cantú and ICREA Prof Gustau Catalan, reports the largest photovoltaic field ever observed in a photovoltaic device.


The photovoltaic effect is the main physical and chemical principle behind every photovoltaic device, more popular known as a Solar Cell. It is characterized by the conversion of photons (from any artificial or natural light source like sunlight) into usable electrical energy. Modern photovoltaic devices have been intensively researched since the early days of the semiconductor transistor revolution (1940s) and nowadays they provide around 13% of the global renewable electric energy, a figure that will steadily increase to meet the COP21 directives.

A fundamental limit of current photovoltaic devices "“all of which are based on semiconductor junctions- is its output voltage, which typically is limited to ~ 1.5 volts (like AA battery) per junction. This limit is due to intrinsic material properties "“basically, the semiconductor bandgap- and is therefore independent of the solar cell area, regardless whether it is a microscopic dot or a large area solar panel. .

By contrast, there is another family of materials where photovoltages much larger than the bandgap can be achieved; they are the so-called ferroelectrics, intrinsically polar materials where the photovoltage is originated by the asymmetry of the crystal lattice instead of by a semiconductor interfacial effect. Until now, ferroelectric materials held the record for the highest photoelectric fields ever produced (the photovoltaic field is, in first approximation, the photovoltage divided by the thickness of the device).

Now, a multidisciplinary research team from the Institut Català de Nanociència i Nanotecnologia (ICN2), funded by Severo Ochoa Excellence Program, has reported the largest ever photovoltaic field, reaching values in excess of a million volt per centimetre and beating by a factor of x20 the previous state of the art. Furthermore they have discovered the effect in a class of materials (known as antiferroelectrics) where the photovoltaic effect had not been explored before. The ICN2 research team behind the discovery is formed by Dr Amador Pérez-Tomás from ICN2, Prof Mónica Lira-Cantú from CSIC and ICREA research professor Gustau Catalan.

It was in many ways a real surprise as these materials are antipolar and not polar (hence the name antiferroelectrics) and thus it was not expected to present stable photovoltaic action, but the authors have proposed an explanation for the observed results. There is, however, still some way for this discovery to be of practical use in photovoltaic cells, because even though their photovoltage is very large, their electrical current still remains too low, meaning that the electrical power is still below that of standard semiconductor devices. The researchers have nevertheless filled a patent to protect the technology, and are working on the optimization of the device to rapidly advance into practical applications as they believe it can find uses in practical applications such as photovoltaic sensors and photocatalysts.


Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: