+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Swansea University academics develop world’s first completely roll-to-roll printable perovskite solar cell

News

Swansea University has established a low-cost and scalable carbon ink formulation capable of unlocking, for the first time, the potential for perovskite solar cells to be manufactured at scale.

Using slot die coating in a roll-to-roll (R2R) process, academics from the SPECIFIC Innovation and Knowledge Centre at Swansea University have established a way to create “fully printable” perovskite photovoltaics (PV), a term often used but, until now, incorrect.

The team searched for an alternative to the gold electrode that is typically applied using an expensive and slow evaporation process after the device has been printed.

Dr David Beynon, Senior Research Officer at SPECIFIC, said: “The key was identifying the right solvent mix, one which dries as a film without dissolving the underlying layer.

“X-ray diffraction analysis showed carbon electrode ink is capable of this when formulated with an orthogonal solvent system.

“This innovative layer can be applied continuously and compatibly with the underlying layers at a low temperature and high speed.”

Published in Advanced Materials, this new research has received funding from the European Regional Development Fund through the Welsh Government, and from the Engineering and Physical Sciences Research Council (EPSRC) through SPECIFIC and the Application Targeted and Integrated Photovoltaics (ATIP) Programme Grant.

Photovoltaic Research Lead, Professor Trystan Watson, said: “Perovskite solar cells show great promise in the drive towards cleaner, greener energy. The ability to produce a fully working device entirely in-line makes high-volume manufacturing easier and more economical and is a big step towards their commercialisation. It unlocks the idea of manufacturing process where a solar ink is added one end and a solar cell emerges from the other.”

The devices with carbon electrodes provided a similar photovoltaic performance to the conventional evaporated gold electrodes, as part of a small-scale device on a rigid glass substrate, with power conversion efficiencies (PCE) of 13-14% and the additional benefits of outperforming at higher temperatures and having better long-term stability.

The new fully R2R coated device, which was printed onto a 20-metre-long flexible substrate, produced a stabilised power conversion efficiency of 10.8%.

Dr Ershad Parvazian, Postdoctoral Researcher at SPECIFIC, said: “The most important part of this project was coating the carbon entirely, R2R, a new process of working with perovskite photovoltaics, which helps to scale up easier.

“For a few years now, the efficiency of these devices has been increasing, with the expectation that they could be fully printed. This work has proved that.”

This new generation of solar cell has significantly benefited from the unique collaborative structure of its creators, a team of Swansea University chemists, materials scientists, and engineers all on-site.

In just four years, this innovative method for PV has been designed and made, assessed and analysed in detail, adapted and improved, making the possibility of printing and installing millions of meters of solar cells across the globe closer than ever.

Professor Watson said: “The next challenge in printed PV for us at Swansea University, is to prove to people that these work.

“In order to achieve this, we need to start making something that really looks like a solar panel. We can then install them on buildings and understand how close we are to delivering on the promise of UK based manufacturing of green renewables.”

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: