Info
Info
News Article

Doubling Solar Efficiency

News
New solar energy conversion process discovered by Stanford engineers could revamp solar power production

Stanford engineers have figured out how to simultaneously use the light and heat of the sun to generate electricity in a way that could make solar power production more than twice as efficient as existing methods and potentially cheap enough to compete with oil. Unlike photovoltaic technology currently used in solar panels - which becomes less efficient as the temperature rises - the new process excels at higher temperatures. Called "photon enhanced thermionic emission," or PETE, the process promises to surpass the efficiency of existing photovoltaic and thermal conversion technologies.


"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," said Nick Melosh, an assistant professor of materials science and engineering, who led the research group. "It is actually something fundamentally different about how you can harvest energy."


And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable. Melosh is senior author of a paper describing the tests the researchers conducted. It was published online Aug. 1 in Nature Materials.


"Just demonstrating that the process worked was a big deal," Melosh said. "And we showed this physical mechanism does exist; it works as advertised."


Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat. This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.


If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures. Until now, no one had come up with a way to wed thermal and solar cell conversion technologies. Melosh's group figured out that by coating a piece of semiconducting material with a thin layer of the metal cesium, it made the material able to use both light and heat to generate electricity.


"What we've demonstrated is a new physical process that is not based on standard photovoltaic mechanisms, but can give you a photovoltaic-like response at very high temperatures," Melosh said. "In fact, it works better at higher temperatures. The higher the better."


While most silicon solar cells have been rendered inert by the time the temperature reaches 100 degrees Celsius, the PETE device doesn't hit peak efficiency until it is well over 200 C. Because PETE performs best at temperatures well in excess of what a rooftop solar panel would reach, the devices will work best in solar concentrators such as parabolic dishes, which can get as hot as 800 C. Dishes are used in large solar farms similar to those proposed for the Mojave Desert in Southern California and usually include a thermal conversion mechanism as part of their design, which offers another opportunity for PETE to help generate electricity as well as minimize costs by meshing with existing technology.


"The light would come in and hit our PETE device first, where we would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to their existing thermal conversion systems," Melosh said. "So the PETE process has two really big benefits in energy production over normal technology."


Photovoltaic systems never get hot enough for their waste heat to be useful in thermal energy conversion, but the high temperatures at which PETE performs are perfect for generating usable high-temperature waste heat. Melosh calculates the PETE process can get to 50 percent efficiency or more under solar concentration, but if combined with a thermal conversion cycle, could reach 55 or even 60 percent - almost triple the efficiency of existing systems. The team would like to design the devices so they could be easily bolted on to existing systems, thereby making conversion relatively inexpensive.


The researchers used a gallium nitride semiconductor in the "proof of concept" tests. The efficiency they achieved in their testing was well below what they have calculated PETE's potential efficiency to be - which they had anticipated. But they used gallium nitride because it was the only material that had shown indications of being able to withstand the high temperature range they were interested in and still have the PETE process occur.


With the right material - most likely a semiconductor such as gallium arsenide, which is used in a host of common household electronics - the actual efficiency of the process could reach up to the 50 or 60 percent the researchers have calculated. They are already exploring other materials that might work. Another advantage of the PETE system is that by using it in solar concentrators, the amount of semiconductor material needed for a device is quite small.


"For each device, we are figuring something like a 6-inch wafer of actual material is all that is needed," Melosh said. "So the material cost in this is not really an issue for us, unlike the way it is for large solar panels of silicon."


The cost of materials has been one of the limiting factors in the development of the solar power industry, so reducing the amount of investment capital needed to build a solar farm is a big advance.


"The PETE process could really give the feasibility of solar power a big boost," Melosh said. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."


And that is still a big enough increase that it could make solar energy competitive with oil. The research was largely funded by the Global Climate and Energy Project at Stanford and the Stanford Institute for Materials and Energy Science, which is a joint venture of Stanford and SLAC National Accelerator Laboratory, with additional support from the Department of Energy and the Defense Advanced Research Projects Agency.


Source Stanford University

Sonnedix Acquires 150MW Utility Scale Project Located In Central Chile
AEG Power Solutions Equips The Microgrid Laboratory Emulator Of Paderborn University
BayWa R.e. And HeidelbergCement Sign First Solar Corporate PPA In Polish History
Q CELLS Solar Modules Keeping The Lights On For Dutch Bulb Grower
Ib Vogt Achieves Financial Close And Start Of Construction Of 116 MWp Solar PV Project In Malaysia
The Smarter E South America Postponed To October 18-20, 2021
Solar Energy For Water Treatment: IBC SOLAR Helps Water Authority Become More Sustainable
SUNfarming Reaches Financial Close On Project Financing For 26 MWp PV Portfolio In Poland
Luxcara And GE Renewable To Deliver 753 MW To Sweden With Single Onshore Wind Farm
Sonnedix Brings Chile Closer To Meet Its Renewable Power Targets
Driving Efficiency Through Flexible Solar Power Solutions
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
Sonnedix Adds 40 MW Of Capacity To Its Portfolio In Chile
SunBrush Mobil And Infinity Establish Service Base At Benban, Africa's Largest Solar Park
VivoPower International PLC Announces Completion Of Electrical Works For 39 MWdc Molong Solar Farm
Winch Energy Closes Largest Mini Grid Financing Portfolio To Date
SUNfarming Secures EUR 10 Million In Fresh Money For Poland
SolarArise Commissions 75 MW Solar Plant In Uttar Pradesh
Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
Greencoat Renewables Announces First Transaction In Nordic Market
Leclanché Selected By ENERGODATA To Provide Battery Storage
International Solar Alliance Special Assembly Elects Dr Ajay Mathur As New Director General
US Solar Fund To Acquire Up To 50% Of 200MWDC Mount Signal 2

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event