Info
Info
News Article

Natcore Awarded License By NREL To Develop And Commercialize A Line Of Black Silicon Products

News
Natcore Technology Inc has been granted a patent license agreement from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to develop and commercialize a line of black silicon products--including equipment, chemicals, and solar cells---based on NREL patents. The license grants Natcore exclusivity in the field of diffused emitters with liquid phase passivation.

Natcore and NREL have also agreed to enter into a Cooperative Research and Development Agreement to develop commercial prototypes that embody NREL's black silicon inventions. 

"Black silicon" refers to the apparent color of the surface of a silicon wafer after it has been etched with nano-scale pores; the black color results from the absence of reflected light from the porous wafer surface. R&D Magazine awarded the black silicon technology an R&D 100 Award in 2010, identifying it as one of the top 100 technological innovations of the year.

A panel made from black silicon solar cells will produce a significantly greater amount of energy (KwHrs) on a daily basis than will a panel made from cells using the industry standard thin film coating, not only because the reflectance is lower but also because the angular dependence of the reflectance from black silicon is much lower as well. The latter fact means a black silicon panel will perform better during the morning and afternoon hours when the sun hits at an angle and will also outperform standard cell panels on cloudy days. The combination of lower cost and higher energy output per kilowatt of installed array peak power should quickly make black silicon the antireflection control technology of choice in the industry. 

For solar cells, minimum reflectivity is desirable because sunlight that is reflected, rather than absorbed, is "wasted." The reflectivity of a polished silicon wafer surface approaches 40%, giving the wafer its shiny appearance. Adding the industry's typical antireflective coating reduces the average reflectivity to approximately 6% and gives the cells their distinctive dark blue color. The black silicon process has been shown by Natcore scientists and NREL researchers to reduce average reflectivity to less than 1.5%.

Black silicon solar cells have been studied since the 1980s because of their potential for significantly improved performance compared to standard production cells. But a key obstacle to turning their increased light absorption into increased power output is a significantly increased area of exposed silicon on the sidewalls of the pores and on the small mesas that remain at the top surface of the wafer itself. This increased area must be passivated, or treated to keep it from trapping the light-generated electric charges as they migrate toward the contacts of the solar cell, a process that robs the cell of output power. 
"Natcore has the ability to passivate black silicon cells using their liquid phase deposition (LPD) technology. That has been the missing piece. It's what will enable black silicon to reach its potential," says Dr. Dennis Flood, Natcore's Chief Technology Officer. 

"Before Natcore's passivation technology, it was necessary to put coated cells into a 1,000 deg. C. furnace to create a thermal oxide," continues Flood. "Natcore's LPD silica coating achieves passivation without requiring an extra thermal process."

Prior to today's announcement, NREL sent black silicon wafers with junctions-unfinished cells-to Natcore. Natcore coated them with SiO2 and passivated them. NREL then applied contacts and tested the completed cells in their labs in Golden, CO. According to Flood, the result persuaded NREL to grant Natcore a license to develop and commercialize products based on the NREL black silicon technology.

"Double the output, halve the cost," says Natcore President and CEO Chuck Provini. "That's our mantra. To make solar cells cost-competitive, we must reduce their cost and increase their output. The combined NREL-Natcore technologies will reduce cost by eliminating the need for thermal oxidation. And they'll increase output by enabling cells to be more productive throughout all daylight hours."

"We're combining NREL's black silicon technology with our LPD and passivation technologies," Provini adds. "We'll optimize the combined processes and incorporate them into our AR-Box. AR-Box enables use of an all-liquid phase process for creating ultralow reflectivity, high-performance silicon solar cells at high volume production rates." AR-Box is Natcore's device that uses the company's liquid phase deposition (LPD) process to grow antireflective (AR) coatings on silicon wafers.
The NREL license contains a development and commercialization plan that establishes technical and market milestones for Natcore, along with a royalty structure. These are subject to confidentiality provisions set by the parties. The technical milestones include solar cell efficiency goals, some of which are to be met by August of 2012. The market milestones include commercial sale dates and dollar targets. The agreement is dated December 12, 2011, and is effective for as long as the NREL patents are enforceable.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy LLC
--

Ib Vogt Achieves Financial Close And Start Of Construction Of 116 MWp Solar PV Project In Malaysia
The Smarter E South America Postponed To October 18-20, 2021
SunBrush Mobil And Infinity Establish Service Base At Benban, Africa's Largest Solar Park
Sonnedix Brings Chile Closer To Meet Its Renewable Power Targets
VivoPower International PLC Announces Completion Of Electrical Works For 39 MWdc Molong Solar Farm
Greencoat Renewables Announces First Transaction In Nordic Market
Sonnedix Adds 40 MW Of Capacity To Its Portfolio In Chile
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
International Solar Alliance Special Assembly Elects Dr Ajay Mathur As New Director General
Winch Energy Closes Largest Mini Grid Financing Portfolio To Date
Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
Solar Energy For Water Treatment: IBC SOLAR Helps Water Authority Become More Sustainable
Luxcara And GE Renewable To Deliver 753 MW To Sweden With Single Onshore Wind Farm
US Solar Fund To Acquire Up To 50% Of 200MWDC Mount Signal 2
SolarArise Commissions 75 MW Solar Plant In Uttar Pradesh
Sonnedix Acquires 150MW Utility Scale Project Located In Central Chile
BayWa R.e. And HeidelbergCement Sign First Solar Corporate PPA In Polish History
Leclanché Selected By ENERGODATA To Provide Battery Storage
AEG Power Solutions Equips The Microgrid Laboratory Emulator Of Paderborn University
Driving Efficiency Through Flexible Solar Power Solutions
Q CELLS Solar Modules Keeping The Lights On For Dutch Bulb Grower
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
SUNfarming Secures EUR 10 Million In Fresh Money For Poland
SUNfarming Reaches Financial Close On Project Financing For 26 MWp PV Portfolio In Poland

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event