+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

What are the future prospects for organic PV?

Dr Harry Zervos, Senior Technology Analyst at IDTechEx discusses Organic Photovoltaics (OPV) unique selling points and challenges facing the industry for the next decade.

The first two generations of photovoltaics, wafer-based and thin film devices, have seen mass market adoption in recent years, with different technologies characterized by varying degrees of success. Crystalline silicon platforms are by far the most successful, holding over 80% of market share, but are currently characterized by low profitability. Thin films have found success in markets where large land areas are available (e.g. solar farms) or in parts of the world where weather conditions limit the power output of silicon modules (e.g. humid, hazy regions).

These first two generations are now being followed by a third, which includes dye sensitised solar cells (DSSC) and organic photovoltaics (OPV). These devices offer different attributes and are characterized by different performance metrics.

As discussed in the recent  IDTechEx Research report "Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players" organic photovoltaics, although potentially a disruptive technology, do not currently offer very high efficiency levels or lifetime and these characteristics limit their market uptake. On the other hand, OPVs can offer versatility in form factor, improved indoor performance and low capital expenditure for large scale manufacture.

The report discusses in detail the market trends and forecasts for growth in the next decade, as well as the main sectors that will be initial target markets for organic solar cells.

Organic PV: attributes, unique selling points and challenges
Printability and flexibility of form factor are the main characteristics in which organic PV outperform competing technologies but difficulties in achieving long lifetimes and higher efficiencies pose a barrier to further adoption of the technology.

Based on extensive interviews with players across the industry, including academics, manufacturers and potential end users, there are now road-maps tracing yearly developments in efficiency, lifetime and cost levels of organic photovoltaics. 

Efficiency
Efficiency levels are likely to remain under 10% in the next 5-8 years, even in tandem-cell modules. Analysis suggests that no breakthrough in technology will occur and improvements take place slowly and linearly in time. This holds true in spite of the fact that a diverse range of active materials can be envisioned and synthesised for use in OPV cells. 

This means that OPVs will struggle to outperform more established technologies of today. As a conclusion, breaking the 10% barrier in module performance is not anticipated before 2022-2023.

Lifetime
OPV device performance degrades severely when exposed to ambient moisture and oxygen. The net effect typically is that OPV cells die within days if not encapsulated while lifetime remains on the order of 2-3 years when passivated using existing flexible encapsulation solutions. 

Rigid glass encapsulation (such as float glass for instance) allows for 10+ years lifetimes to be achieved but of course, it compromises the attributes of flexibility in form factor. There is currently active R&D for developing flexible barriers with sufficient performance, solutions are explored based both on plastic substrates with transparent inorganic layers deposited on them (3M, Toppan, etc,) and on thin flexible glass developed by major glass companies such as Schott, Corning or NEG. Although able to reach adequate performance characteristic none of the current techniques offer favourable price points.

Future potentials

Putting together a roadmap based on our understanding of the industry and announced lifetimes of organic PV cells from major developers, we have included three different scenarios:

ï‚£ Interest in OPVs remains limited leading to reluctance from barrier companies to invest further. High performance remain achievable but at prohibitive prices.
ï‚£ Highest performance barriers remain out of reach but an intermediate range of barriers become available at reasonable price points. In this scenario, the market pull stems from applications such as posters and point-of-sales, indoor consumer electronics, etc.
ï‚£ The market pull is strong, leading to large-scale investment in barrier technology. This scenario is helped by the fact that OLEDs also suffer from a similar challenge, resulting in a synergy that pushes market demand.

Cost road-maps
The energy generation cost is the most critical aspect of a given PV technology. It largely determines the market demand and penetration. Based on potential future  technology developments, we estimate a cost per watt metric, with assumptions that there won't be significant changes in factors such as:

ï‚£ The price points for transparent conductors
ï‚£ Low cost encapsulation such as glass
ï‚£ Small volumes of active materials due to limited market penetration

In this case, even a 6.8% efficient organic PV module would be characterized by a cost of $2.8/Watt. Based on the above analysis of efficiency, lifetime and cost developments in the next ten years, we are expecting OPVs to initially serve niche markets.

As a result the overall value is expected to remain smaller than $87 million in 2023 and the total installed capacity in 2023 at <74 MW. These are not large values considering that the total installed PV capacity in 2011 was 23-24 GW. Therefore, organic PV will remain a small market with approximately 1% total market share.

© 2013 Angel Business Communications. 
Permission required.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: