+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Fraunhofer reveals colourful PV designs

News

Until now, designers of buildings have no choice but to use black or bluish-grey coloured solar panels. With the help of thin-film technologies, researchers have now been able to turn solar cells into colourful creations.

Covering a roof or a façade with standard solar cells to generate electricity will change a building's original appearance "“ and not always for the better. At present only dark solar panels are widely available on the market. "Not enough work has been done so far on combining photovoltaics and design elements to really do the term "˜customized photovoltaics' justice," says Kevin Fuechsel, project manager at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena.

But things are changing. The IOF physicist has been focusing for the last four years on nanostructured solar cells suitable for mass production as part of a junior research group funded by Germany's Federal Ministry for Education and Research (BMBF). Together with a Fraunhofer team and scientists from the Friedrich-Schiller University in Jena, the group of optics specialists is looking for cost-effective techniques and manufacturing processes to increase both the efficiency of solar panels and the design flexibility they give architects and designers.

Fuechsel is currently working with his "efficient design" team on the fundamentals of how to make coloured solar cells from paper-thin silicon wafers. These will be particularly suited to designs for decorative façades and domestic roofs. The silicon semiconductor material, just a few micrometres thick, absorbs light and turns it into electricity. To enable lots of light to reach the silicon substrate, the semiconductor layer is given an optically neutral protective barrier (insulator), onto which a hundred-nanometre-thick oxide layer is applied. This transparent conductive oxide (TCO) conducts electricity, and is there primarily to guide as many light particles as possible to the semiconductor layer below. "TCO has a lower refractive index than silicon, so it works as an anti-reflective coating," Fuechsel says.

The simple construction of this SIS (semiconductor-insulator-semiconductor) solar cell, with its transparent outer layer, has a further advantage: Not only does it capture more light, it means solar panels can be made in different colours and shapes. "The colour comes from changing the physical thickness of the transparent conductive oxide layer, or modifying its refractive index," Fuechsel says. The Jena-based researchers have thus managed to combine wafer-based silicon with processes borrowed from thin-film photovoltaics. They are also pioneering the use of innovative coating materials. Indium tin oxide is the most common material used today, but it is expensive.  The IOF laboratory is working on how to use cheaper zinc oxide with added aluminium. New opportunities in façade design are being opened up not just by SIS solar cells, however, but also by dye solar modules and flexible organic solar cells.

But how does colour affect the efficiency of these new SIS modules? "Giving solar cells colour doesn't really affect their efficiency. The additional transparent TCO layer has barely any impact on the current yield," Fuechsel says. Simulations showed that SIS cells could be up to 20 percent efficient. In practice, the efficiency depends on the design of the solar panels and the direction the building faces. But not every colour allows you to generate the same amount of electricity. There are restrictions for example with certain blends of red, blue and green.

To connect several solar cells to create a single module the IOF scientist will use laser-based optical welding processes. They enable accurate work at a micrometre scale and do not damage the surrounding material. Researchers are also developing an inkjet printing process to contact the conductive TCO later on the silicon wafer. This will make manufacturing faster and allow additional degrees of flexibility in design. SIS solar cells could even be used to make large billboards that produce their own electricity. Patents already cover the production of coloured cells, as well as the ability to integrate design elements into solar panels and whole modules. "This opens up numerous possibilities to use a building to communicate information, displaying the name of a company or even artistic pictures," Fuechsel says.

 

 

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: