+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

See through solar breakthrough announced

News

Nearly doubling the efficiency of a breakthrough photovoltaic cell they created last year, UCLA researchers have developed a two-layer, see-through solar film that could be placed on windows, sunroofs, smartphone displays and other surfaces to harvest energy from the sun.

The new device is composed of two thin polymer solar cells that collect sunlight and convert it to power. It's more efficient than previous devices, the researchers say, because its two cells absorb more light than single-layer solar devices, because it uses light from a wider portion of the solar spectrum, and because it incorporates a layer of novel materials between the two cells to reduce energy loss.

While a tandem-structure transparent organic photovoltaic (TOPV) device developed at UCLA in 2012 converts about 4 percent of the energy it receives from the sun into electric power (its "conversion rate"), the new tandem device -- which uses a combination of transparent and semi-transparent cells -- achieves a conversion rate of 7.3 percent.

Researchers led by Yang Yang, the Carol and Lawrence E. Tannas, Jr., Professor of Engineering at the UCLA Henry Samueli School of Engineering and Applied Science, said the new cells could serve as a power-generating layer on windows and smartphone displays without compromising users' ability to see through the surface. The cells can be produced so that they appear light gray, green or brown, and so can blend with the color and design features of buildings and surfaces.
The research was published online by Energy & Environmental Science, a Royal Society of Chemistry journal.

"Using two solar cells with the new interfacial materials in between produces close to two times the energy we originally observed," said Yang, who is also director of the Nano Renewable Energy Center at the California NanoSystems Institute at UCLA. "We anticipate this device will offer new directions for solar cells, including the creation of solar windows on homes and office buildings."

The tandem polymer solar cells are made of a photoactive plastic. A single-cell device absorbs only about 40 percent of the infrared light that passes through. The tandem device -- which includes a cell composed of a new infrared-sensitive polymer developed by UCLA researchers -- absorbs up to 80 percent of infrared light plus a small amount of visible light.

Chun-Chao Chen, a graduate student in the UCLA materials science and engineering department who is the paper's primary author, said using transparent and semi-transparent cells together increases the device's efficiency, and that the materials were processed at low temperatures, making them relatively easy to manufacture.

Other authors of the study were Gang Li, a staff researcher in the materials science and engineering department at UCLA; Jing Gao, a materials science and engineering graduate student; and Letian Dou and Wei-Hsuan Chang, graduate students in the UCLA materials science and engineering department and the California NanoSystems Institute.

The research was funded by the Air Force Office of Scientific Research, the Office of Naval Research and EFL Tech.


Journal Reference:

Chun-Chao Chen, Letian Dou, Jing Gao, Wei-Hsuan Chang, Gang Li, Yang Yang. High-performance semi-transparent polymer solar cells possessing tandem structures. Energy & Environmental Science, 2013; DOI: 10.1039/C3EE40860D

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: