+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

In pursuit of biological solar power

News

A Binghamton University engineering researcher has designed a biological solar cell that's a million times more effective than current technology. Preliminary data on Seokheun "Sean" Choi's next advancement is a thousand times better than that. His cell also works in the dark, and is self-sustaining.

The new designs don't make biological solar cells practical, yet. But they do take them out of the realm of "absurd" and place them squarely in the realm of "someday soon."

Here's the challenge:

Current photovoltaic cells generate watts of energy per square centimetre. A solar chip about the size of your fingernail can power a simple handheld calculator. Existing biological cells "” which use photosynthesis to generate electricity "” produce picowatts per square centimetre "” a trillionth of a watt. To power that same calculator, the cells would stretch 20 meters wide and from Binghamton to Ireland. Absurd.

Choi's first biological solar cell produces a million times more energy, microwatts per square centimeter, so the calculator could operate with a solar panel that fits on a trailer home roof "” just 20 meters by 5 meters. His findings were recently published in the Royal Society of Chemistry's journal Lab on a Chip.

And Choi's latest experiment churns out milliwatts per square centimetre "” reducing the calculator's solar panel to a backpack-sized 8 inches by 20.

That brings it into the range of practical application, says Hongseok "Moses" Noh, an engineer and professor at Drexel University who specializes in lab-on-a-chip technology and applications. "Milliwatt power should be sufficient to meet those eneeds," Noh says. "But the device, so far, is too big for hand-held systems, honestly."

If Choi can reduce the cell to a tenth of its size while maintaining milliwatt power density, it would be enough to power hand-held blood analysis devices or air-testing machines. "This is one of very few miniaturized bio-solar products," Noh says, and it's worth following Choi's progress.

What makes Choi's approach different? Existing biological solar cells use a thin strip of gold or indium tin oxide as an anode between the bacteria and an air cathode. Not very efficient, and the bacteria eventually die because they lack air.

Choi uses a carbon anode immersed in the bacteria-laden fluid "” a pretty peridot green in a lab flask. More efficient, and because the solution has access to air, it's self-sustaining. It also uses the plant's natural respiration to draw energy from the sugars in the cells to keep power up even if light is low.

Choi, an assistant professor of electrical and computer engineering, says he doesn't understand why one form of cyanobacteria works better than another, or why a mixture of cyanobacteria and heterotrophic bacteria work even better than a single variety. His last biology class was in high school.

 

"I have no idea about microbiology; I just bought the bacteria and followed the instructions to culture it," he says. But millions of bacteria species abound, and he plans to experiment to find the most productive combination.

Or, he suggests, he might work with bioengineers to develop a bacterium with its photosynthetic engine on the cell's surface instead of deep in its heart. That would be another order of magnitude more productive because less energy would be wasted just going from the heart of the cell to its exterior. He has received seed funding from Binghamton's Transdisciplinary Area of Excellence in smart energy to continue this work.

Choi says he's confident he'll eventually reach watt-level energy density, comparable to photovoltaic cells. "I can get that," he says. "We have room for improvement."

 

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: