+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Minuscule pillars double the efficiency of solar cells

News

Solar cells are generally flat. However, by adding minuscule silicon pillars to the surface, it is possible to more than double the amount of energy produced for each surface. This has been demonstrated by research by academics at the University of Twente research institute MESA+. In an article published in the scientific journal Advanced Energy Materials, they show what the optimum height and doping depth of the pillars is.

Last year, the University of Twente researchers succeeded in creating a semiconductor fitted with one million minuscule pillars per square centimetre. These pillars are able to convert sunlight into electricity. The semiconductor consists of two types of silicon: one is "˜contaminated' with the element boron and the other with phosphorus. The transition between both types of silicon, known as the PN junction, is essential for the efficiency of the solar cell, as it is at this location in the structure that the positive and negative charges are separated. The challenge in creating the pillars was to make sure that the PN junction followed the structure of the surface as accurately as possible.

In a new study, the same researchers looked at what pillar height and what PN junction depth the semi-conductor works most efficiently. The answer was 40 micrometres high and 790 nanometres deep, producing an efficiency rate of 13 per cent. This represents more than double the efficiency compared to a flat structure, where no more than six per cent of the sunlight can be converted into electricity.

The research is part of a large-scale project in which various research groups at the University of Twente are working together on a "˜solar-to-fuel' device that enables the conversion of sunlight directly into a fuel such as hydrogen gas. The pillars have two functions here "“ not only do they increase the amount of sunlight that can be captured, they also enlarge the reaction surface area on which hydrogen can be produced. In addition, the pillars can be used to make solar cells more efficient. However, University of Twente Professor Jurriaan Huskens does not expect this to be particularly worthwhile for regular solar panels because of the higher costs of production. Nonetheless, the technology could prove useful for specific technologies.

The research has been carried out by scientists from the MESA+ Molecular Nanofabrication and Mesoscale Chemical Systems research groups. The leading researcher is Rick Elbersen, who gained his PhD at the University of Twente on 4 December for his thesis on the use of silicon as a basic material for structuring solar cells and the optimization and modification of these materials. The research was made possible in part thanks to the financial assistance received from the Foundation for Fundamental Research on Matter.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: