+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

ZSW develops Ultra-High Capacity Energy Storage


Ultra-high capacity storage elements are able to load and deliver a great deal of energy in a very short time. Many industrial applications as well as hybrid vehicles can benefit from this capability.

Scientists at the Centre for Solar Energy and Hydrogen Research in Baden-Wuerttemberg (ZSW) recently developed electrodes for novel power storage elements that can cut charge and discharge time to three seconds. The electrodes feature a nanostructured surface that made this leap in performance possible. Researchers used a water-based, non-flammable solution for the electrolyte, so this storage element can handle high and low temperatures. The ZSW achieved these results as part of the FastStorage BW II research project, which the state of Baden-Wuerttemberg is funding with a €3 million grant.

Efforts to maximize electrical vehicles' range focus on optimizing lithium-ion batteries' energy density. However, forklifts, hybrid cars and the like require electrical power to be loaded and delivered at very short notice. High-performance capacitors are the preferred option for this sort of application. Also called supercapacitors, ultracapacitors and electrochemical double-layer capacitors, these elements can be charged and discharged much faster than lithium batteries.

An energy storage device's performance is determined by the electrodes' underlying technology. For this newly developed element, ZSW researchers chose nanostructured nickel, manufactured in a special process and coated with nickel hydroxide, as the active material for the positive electrode. They coated the negative electrode with commercial activated carbon rather than with metal hydride. "ƒ

An aqueous potassium hydroxide solution serves as the electrolyte. Unlike supercondensers' organic electrolytes, it is not combustible, which makes this cell that much safer.

The first demo cell has already been made. "Its C rate, or discharge rate, is close to 1,200," says Prof. Werner Tillmetz, a member of ZSW's board of directors and head of the Electrochemical Energy Technologies division. "The new storage element is thus able to deliver its entire capacity within roughly three seconds." With a C rate typically in the single-digit range, lithium-ion batteries come nowhere near this performance.

The scientists achieved this technological advance with the benefit of the new electrodes' nanostructure. The microstructured surface of the conventional storage element used to date has a lot less area than the ZSW material's nanostructured surface, which is 100 to 1,000 times greater. The finer structuring has an enormous impact, vastly increasing the surface area and enabling charge carriers to be transferred much faster and with less resistance.

"The cell was produced by way of conventional blade-coating on a laboratory scale," explains Tillmetz. "The manufacturing process can be easily scaled up to produce large-area cells, so the production of prototypes isn't far off."

Ultra-high capacity storage elements come in very handy in scenarios where a great deal of electrical power has to be charged and discharged very quickly and at short notice. These include industrial applications such as high-bay storage and retrieval machines, intralogistic shuttle systems and hybrid cars. The annual market potential for such cells is considerable. This market could be worth up to €300 million in two to four years' time. The FastStorage BW II project is still underway and will run until the end of 2017.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: