+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
{megaLeaderboard}
{normalLeaderboard}
News Article

Ensuring maximum solar extraction

News

Researchers expect silicon solar cells set to become a thing of the past and in a move in that direction a Flinders University researcher has developed a novel computer system that aims  to find the best emerging carbon nanotubes to fuel the future.

As part of his PhD, postdoctoral research fellow Dr Daniel Tune (pictured) has designed a computer modelling system that shows which combination of carbon nanotubes absorb the most sunlight, therefore providing the most energy.

While silicon is predominantly used in the manufacture of solar cells, particularly most commercial rooftop solar installations, Dr Tune said scientists are now exploring the use of carbon nanotubes as a cheaper, more environmentally-friendly option.

About 50,000 times smaller than a human hair, these "˜nano' layers of can carbon produce energy by absorbing sunlight and could be used in a variety of applications, including window solar cells which absorb infrared and harmful ultra-violet radiation and turn it into electricity.

"Silicon is really expensive to produce, both in terms of money and energy consumption, but carbon is non-toxic and certainly not in short supply and carbon nanotubes could be made very cheaply," Dr Tune, based in the Centre for Nanoscale Science and Technology, of the School of Chemical and Physical Sciences, said.

"In 2011, another group of researchers from the US successfully fabricated a solar cell using carbon nanotubes, but there are more than 70 different types of carbon nanotube that could be used in such solar cells," he said.

"That raised the question of which nanotubes, and which combinations of nanotubes, are best for different applications, which is why I developed the modelling system."

Dr Tune said carbon nanotubes absorb a variety of different colours from the sunlight spectrum, therefore the system can be used to identify which colours the nanotubes absorb, how much energy they generate and what combinations absorb the most sunlight.

"There are only so many types of carbon nanotubes that can be made. Individually, they don't catch much sunlight on their own which is why it's important to know what combinations to use to maximise the benefit, depending on the application.

"For example, scientists could apply the computer model to create a combination of nanotubes that absorbs the most infrared but not visible light, creating the transparent solar cells that could be used as window coatings.

"This would have the added benefits of minimising damage to furnishings and fittings, reducing the need for air-conditioning in hot climates like Australia's, as well as improving the efficiency of local electricity grids by producing power at the point of consumption."

 

 

A paper co-authored by Dr Tune, titled: The potential sunlight harvesting efficiency of carbon nanotube solar cells, was published in the July 2013 edition of Energy and Environmental Science.

Schletter Group: 48 MWp Project in Italy
ENCAVIS Acquires Two More Solar Parks In Spain and Surpasses The Planned Expansion
Maximum profitability with KACO advanced technology for complex solar roofs
Enviromena wins contract to re-power three major solar farms ahead of the summer energy peak
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
New Swansea University Collaboration to Support Sustainable, Locally Manufactured Solar PV
Next2Sun Builds World's Largest Vertical PV Plant at Frankfurt Airport
DNV Publishes Bankability Study of Solcast Satellite Irradiance Data
Steel company SSAB switches to fossil-free energy in Italy with PV solution from Solnet
janom Investments enters the Croatian solar energy industry by investing in a 30 MW power plant project
Trina Solar Vertex S+ 505W n-type dual-glass modules enter mass production
BayWa r.e. and 3E sign partnership agreement for monitoring & analytics of global PV portfolio
Accelerating Spain's Energy Transformation: LONGi to supply Naturgy with 1 million modules in new deal
NTR announces corporate PPA with Almac Group to buy energy from Murley Wind Farm, Northern Ireland
Oxford PV sets new solar panel efficiency world record
Order Intake for the Construction of Wind Turbines in Turkey
Trilantic Europe acquires stake in AEROCOMPACT Group
Octopus Energy makes solar farm debut in Germany
Austria-based KOGA Energy, a solar EPC solutions provider, has kicked off.
Exus to acquire 625MW New Mexico solar portfolio
Capcora Accompanies SUSI Partners In Raising Senior Debt For a Polish Renewables Portfolio
Qualitas Energy acquires a 96 MW wind energy project pipeline in Germany
Nordex Group receives orders from the UK for approx. 150 MW
Trina Solar gains EPD certification from UL Solutions and EPDItaly for industry leading modules
Mandarin Oriental Hyde Park, London instals innovative solar tech to decarbonise heating
Efficiency First: The Road to Electrification
SCHLETTER Supplies Austria's Largest PV Roof System
E.ON partners with UK renewable heat innovator Naked Energy
Sonnedix signs innovative EUR500 million loan facility to finance construction of its renewable electricity pipeline in Europe and UK
Construction begins on Glennmont and Ørsted’s Borkum Riffgrund 3 offshore wind farm in Germany
ABB shores up reliable power supply at Southeast Asia’s largest floating solar plant
Sonnedix starts construction of 300MW UK solar PV portfolio

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Solar + Power Magazine, the Solar + Power Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: